Wednesday, 24 June 2015

Early modern human from Romania had recent Neanderthal ancestor

Ancient DNA from Peştera cu Oase demonstrates inbreeding no more than four to six generations previously

The cave site of Peştera cu Oase (‘Cave with Bones’) in Romania has yielded some of the earliest fossil remains of modern humans in Europe. The remains of three individuals recovered from the site include a largely-complete lower jawbone (Oase 1), the near-complete skull of a 15-year-old adolescent, and a left temporal bone. The remains are around 40,000 years old and exhibit a mosaic of modern and archaic features. Modern features include the absence of browridges, a narrow nasal aperture, and a prominent chin; but there are also archaic features such as a wide dental arcade and very large molars. There is little doubt that they are modern humans and not Neanderthals, but some aspects of the morphology are consistent with Neanderthal ancestry.

Researchers have now recovered ancient DNA from the Oase 1 jawbone and sequenced the genome. They report that between 6 to 9 percent of the genome is of Neanderthal origin, a higher percentage than for any other modern human genome sequenced to date. Three chromosomal segments of Neanderthal DNA are of considerable length, suggesting that the Neanderthal contribution to the Oase 1 individual occurred so recently in their past that the chromosomal segments of Neanderthal origin had little time to break up due to recombination. The researchers turned their attention to seven segments of the genome that appeared to be of recent Neanderthal origin and from the genetic lengths of these, implied that Oase 1’s Neanderthal ancestor had lived no more than four to six generations earlier, or less than two hundred years.

The existence of such a recent Neanderthal ancestor casts doubts on theories that suggest that interbreeding occurred only very occasionally, or was confined to an early episode soon after modern humans first left Africa. However, the researchers failed to establish a clear relationship between the Oase 1 individual and later modern humans in Europe, suggests that they may have been a member of an early modern human population in Europe that eventually died out without contributing much to later European populations.

Reference:
x
Fu, Q. et al., An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216-219 (2015).

Friday, 19 June 2015

Kennewick dispute set to reignite

Ancient DNA confirms Native American affinities

Kennewick Man died about 8,600 years ago and was between 40 to 55 years old at the time of his death. In 1996, his skull and some other skeletal parts were discovered in the Columbia River, Kennewick, Washington State. The find was of interest not just to anthropologists but also to Native Americans, who refer to him as the Ancient One. The Plateau people of the Pacific Northwest claimed an ancestral relationship and requested repatriation of the remains as provided for under US federal law (Native American Graves Protection and Repatriation Act or NAGPRA). The land where the remains were found is managed by the US Army Corps of Engineers, who announced that they were willing to hand over the remains. This in turn precipitated a lawsuit from scientists wishing to study the remains.

The plaintiffs’ claim was based on the morphology of the skull, which is long and narrow, with a narrow face, and a jutting chin. It is quite unlike the broad-headed, broad-faced appearance typical of Native Americans and resembles that of certain Pacific populations, in particular the Ainu and Polynesians. It was argued that Kennewick Man belonged to a population that reached America before the ancestors of the present-day Native Americans, and that the request for repatriation of the remains must therefore be rejected. In 2004, the plaintiffs’ claim was upheld by a judicial ruling.

However, subsequent discoveries have cast doubt on the claim that Native Americans are descended from migrants that replaced an earlier American population. Remains have been found that are even older than those of Kennewick Man, yet fall comfortably within the morphological range of present-day Native Americans. Other remains have yielded mitochondrial DNA belonging to haplogroups only found in Native American populations. Genetic studies have failed to find any evidence for a replacement of early Paleoindians by ancestors of today’s Native Americans.

It has been suggested that skull data has simply been misinterpreted. In one study, researchers applied statistical methods to skulls from all over the world, dating from around 15,000 years ago to the present day. They found that when shape variation was considered over a wide geographical range or over a long period of time, the skulls formed a continuum rather than discrete categories. The same pattern was also seen when New World skulls were considered on their own. The supposed Paleoindian and Native American forms were no more than extremes at opposite ends of a continuum, and most of the New World skulls fell well between the two extremes.

Following the 2004 ruling, study of Kennewick Man continued, but only now have researchers obtained ancient DNA from the remains. A team led by Morten Rasmussen has published its results in the journal Nature and they show that Kennewick Man is more closely related to present-day Native Americans than to any other population worldwide. Based on a comparison with Native American groups for whom genome-wide data is available, several groups are apparently descended from population closely related to that of Kennewick Man, including the Confederated Tribes of the Colville Reservation (Colville), which is one of the five groups claiming Kennewick Man.

A renewed claim for repatriation now seems inevitable.

References:
x

1.
Rasmussen, M., Sikora, M., Albrechtsen, A., Korneliussen, T. & Moreno-Mayar, J., The ancestry and affiliations of Kennewick Man. Nature 523, 455-458 (2015).
2.
Jantz, R. & Owsley, D., Variation Among Early North American Crania. American Journal of Physical Anthropology 114, 144-156 (2001).

Thursday, 18 June 2015

Did Aboriginal Australians rediscover boats after over 20,000 years?

Evidence for human activity on island in ancient mega-lake

Lake Mungo is the largest of a series of 19 now dried up lakes making up the Willandra Lakes system. The region is a World Heritage Site covering 2,400 sq. km (925 sq. miles) in southwest New South Wales, about 1,000 km (620 miles) west of Sydney. The water levels in the lakes remained high until 45,000 years ago and then began to decline. They dried up completely 22,000 years ago, and have remained dry ever since. However, a recent survey has shown that 24,000 years ago, Lake Mungo underwent a sudden massive filling episode, increasing its depth by 5 m (16 ft.) and its volume by 250 percent. Lake Mungo became linked to its neighbour, Lake Leaghur, at two overflow points, so creating an island in between.

Humans arrived in the Lake Mungo region at least 20,000 years before the mega-lake phase. The expansion of Lake Mungo would have substantially affected mobility, forcing people to skirt the mega-lake. However, the presence of hearths and stone artefacts on the island suggests that they repeatedly crossed the inflow channel, taking stone tools and hunting equipment with them. While they could have swum, using bags to carry tools, it is likelier that they used boats.

This implies a highly flexible response to the sudden change in conditions, and possibly a re-discovery of boat technology. While Aboriginal Australians must have used boats to reach Australia in the first place, there is a lack of evidence for pelagic fishing and navigation to offshore islands around the Australian coast until a few thousand years ago. It has accordingly been assumed that watercraft technologies were abandoned after initial arrival and dispersal across Australia. If boats were used to cross Lake Mungo during its expanded phase 24,000 years ago, then this represents the revival of a technology which had apparently been abandoned over 20,000 years earlier, and at a location well inland and far from any major navigable rivers.

Reference:
x
Fitzsimmons, K., Stern, N., Murray-Wallace, C., Truscott, W. & Pop, C., The Mungo Mega-Lake Event, Semi-Arid Australia: Non-Linear Descent into the Last Ice Age, Implications for Human Behaviour. PLoS One 10 (6), e0127008 (2015).x


Monday, 1 June 2015

Stop hiding behind dangerous drivers

I won’t mince my words: cyclists who ride on the pavement are an urban blight, at least in North London. I would like to be able to walk to the shops and back without having to be aware that at any second I will be confronted by a cyclist barrelling towards me on the pavement at high speed. Every few minutes I will see a cyclist on the pavement somewhere. Every few weeks I experience what would be described in aviation circles as a ‘near miss’. I’ve given up remonstrating with them: I’ll be sixty later this year and the torrent of foul-mouthed abuse that invariably follows is surely not good for my blood pressure.

Yet what is the response when I complain about this on a ‘Comments’ thread where cycling issues are being discussed on the Guardian website? I’m told I’m having a “petty rant about a problem that does not exist”. I’m accused of making it up because I have an “anti-cycling agenda”. If the problem does not exist, why would I have an anti-cycling agenda? You don’t need to be Mr Spock to see that that is completely illogical.

There have been two high-profile incidents recently involving injury caused to pedestrians by idiots cycling at speed on the pavement. In the first incident, a 44-year-old woman in Bermondsey, South London, was scarred for life. In the second incident, a three-year-old girl was hit and dragged along the pavement in Blackpool. Only by extreme good fortune did she escape serious injury. The response of what I would term ‘cycling activists’ to these incidents is, frankly, disgraceful. See some of the comments under the two reports, but also see this response from the supposedly-responsible London Cycling Campaign. The paranoid, self-pitying headline “Pavement cycling incident sparks anti-cycling commentary in media” sets the tone for the rubbish that dismisses the Blackpool incident as ‘rare’ (which, I’m sure, will be of great comfort to the little girl) and then bangs on about how 98 percent of serious or fatal injuries to pedestrians are due to collisions with motor vehicles.

So that’s all right, then?

Another frequent comment is that you are better off being hit by a bicycle than you are by a car. Maybe it’s just me, but I don’t particularly want to be hit by either. This Youtube video sums up the apparent contempt ‘cycling activists’ have for people who complain about pavement cycling. The video ends with an appeal to tackle the ‘real problem’ of bad drivers.

Time and time again, the same fallacious attitude crops up: ‘whataboutery’. Complain about dangerous cycling and the stock response is to complain about cars. It’s a very strange moral perspective to dismiss the problem of dangerous cycling because motorists cause more death and injury than do cyclists. By the same logic, we should dismiss the problem of dangerous drivers because they are responsible for fewer deaths than wars, global warming, ISIS, etc. A more sinister interpretation is that it represents a collective ultimatum: until dangerous driving are tackled, we will continue to cycle on the pavement, ignore red lights, pedestrian crossings, and indeed any rules that don’t suit us. The injuries to the woman in London and the little girl in Blackpool should be seen as collateral damage in a perceived war between cyclists and motorists. This attitude will not advance the cause of cycling one iota. For as long as it persists, it will only enhance the non-cycling world’s perception of cyclists as anti-social nuisances with a massively over-inflated sense of entitlement. In my view, it is an attitude that is about as representative of the silent majority of law-abiding cyclists as football hooligans are of the tens of thousands of genuine fans who attend matches each week. I have family and friends who cycle. Not one of them thinks this way. Cycling is a mode of transport and a recreational activity. It is not a religion and cyclists are not an ethnic minority. If ‘cycling activists’ want to be taken seriously, they need to stop trying to defend the indefensible.

Saturday, 30 May 2015

Skull surgery used to treat post-traumatic osteomyelitis 4,900 years ago

Did Chalcolithic surgeons possess medical knowledge which remains poorly-understood to this day?

It sounds counter-intuitive, but there is some evidence to suppose that long-bone fractures heal faster if patients have also sustained traumatic skull injuries. The exact mechanism is not fully-understood, but may involve the cytokine interleukin-6, bone morphogenic proteins, and prolactin, all of which are released in response to a brain injury. What is remarkable is this might have been known in Chalcolithic times – and used as a treatment.

In 1992, archaeologists discovered the Early Chalcolithic cemetery of Pontecagnano in southern Italy, associated with the Gaudo Culture and dating to around 4,900 to 4,500 years ago. PC 6589.1 is a 25-year-old male, whose skull shows two lesions. The right thigh bone shows a poorly healed mid-shaft fracture, which had resulted in a chronic infection of the bone marrow known as osteomyelitis affecting both thigh bones.

The condition would have been disabling and was probably the ultimate cause of death, but an evidently-skilled prehistoric surgeon had attempted a cure. The skull lesions were the result of surgical trepanations of the skull cap, where holes had been made in the skull to expose the dura mater. One hole was apparently produced by scraping; the other by drilling with a stone point. There is evidence of significant bone regrowth, suggesting lengthy postoperative survival of the patient.

While the procedure was undoubtedly carried out with the intention of freeing the patient from his painful and disabling condition, the exact reason is not clear. The traditional explanation is that trepanning releases evil spirits associated with the symptoms affecting the patient, but it is possible that healers were aware of a strange curative phenomenon which modern medical science is only now rediscovering.

References:
x

Petrone, P. et al., Early Medical Skull Surgery for Treatment of Post-Traumatic Osteomyelitis 5,000 Years Ago. PLoS One 10 (5), e0124790 (2015).x

Thursday, 28 May 2015

New hominin species reported from Ethiopia

Australopithecus deyiremeda was a contemporary of ‘Lucy’

Hominin remains comprising a complete lower jawbone, a partial lower jawbone and two partial upper jawbones, together with some accompanying teeth have been described as a new species, Australopithecus deyiremeda. The fossils were excavated in 2011 in the Woranso–Mille study area, central Afar, Ethiopia. They were found in deposits dated from 3.3 to 3.5 million years old, making Australopithecus deyiremeda a contemporary of Australopithecus afarensis (the species to which the well-known fossil ‘Lucy’ belongs) and the controversial hominin species Kenyanthropus platyops. The specific name deyiremeda means ‘close relative’ in the local Afar language and follows a now-established tradition of using local languages to name hominin species.

Australopithecus deyiremeda is distinguished from Ardipithecus ramidus by its thicker dental enamel and more robust lower jawbone. It is distinguished from Australopithecus afarensis by a number of features of its lower jawbone, by the positioning of its cheekbones in relation to the upper jawbone, and by its smaller back teeth.

What are the implications of this discovery? For a long time, it was believed that there was just the one hominin species, Australopithecus afarensis, living in the period from four to three million years ago, in East Africa. It was possible to argue that the earlier Australopithecus anamensis (4.2 to 3.9 million years ago) and the later Australopithecus garhi (2.5 million years ago) were simply early and late forms of the same species and that Australopithecus bahrelghazali from Chad (known from a single 3.5-million-year-old specimen) represented a Central African extension of its range. On this view, Australopithecus afarensis was a single, long-lived, geographically widespread species, capable of occupying a wide range of habitats. Not until 2.8 million years ago did other hominin species start to appear: Australopithecus africanus and later Australopithecus sediba in South Africa and the so-called robust australopithecines (Paranthropus) in both South Africa and East Africa.

Even if Kenyanthropus platyops is rejected, this view is no longer tenable. There is now incontrovertible evidence that multiple australopithecine species were living in East Africa during the Middle Pliocene. It is also notable that Australopithecus afarensis has been recorded at Hadar, only 35 km (20 miles) north of Woranso–Mille. Not only did these species overlap in time, they were close in geographical terms, probably occupying differing feeding niches.

 Early hominin evolution has been described as more of a tangled bush than a family tree. In addition to Australopithecus afarensis, Australopithecus deyiremeda and possibly Kenyanthropus platyops, it is likely that the Ardipithecus line was still in existence at this time. The Woranso–Mille site has also yielded a 3.4-million-year-old partial hominin foot with an opposable big toe. Though it has not been assigned to a particular species, the toe suggests Ardipithecus or something very similar.

With the LD-50-1 lower jawbone pushing back the origins of Homo to 2.8 million years ago, later australopithecines such as Australopithecus sediba have been bumped from the list of possible human ancestors. However, the Woranso–Mille discovery means that we are no nearer identifying from just which part of the ‘tangled bush’ the first humans emerged.

References:
x

1.       Haile-Selassie, Y. et al., New species from Ethiopia further expands Middle Pliocene hominin diversity. Nature 521, 483-488 (2015).

Wednesday, 27 May 2015

Killed with a blunt instrument

Evidence for lethal interpersonal violence in the Middle Pleistocene

Evidence of interpersonal violence between humans resulting is (perhaps surprisingly) rare in the Pleistocene. Examples include the Shanidar 3 and St. Césaire 1 Neanderthals, from Iraq and southwestern France respectively. Shanidar 3 suffered a penetrating injury from a projectile weapon, and St. Césaire 1 suffered a fractured skull consistent with a deliberate blow from a sharp object. It cannot be ruled out that the injuries were the result of accidents: a hunting injury in the case of Shanidar 3 and a fall in the case of St. Césaire 1 (though the location of the injury at the apex rather than side of the cranial vault makes this unlikely). Neither incident was fatal, at least not immediately so, as both lived long enough thereafter for healing to begin. There are also cases where bones have been de-fleshed and broken open to extract marrow, suggesting cannibalism – although it is unclear whether individuals were attacked and killed, or whether they were already dead and possibly eaten by their companions.

The 430,000-year-old site of Sima de los Huesos (‘Cave of Bones’) in northern Spain has yielded a large number of human remains described as either Homo heidelbergensis or as proto-Neanderthals. The remains were found in a deep pit into which they were intentionally dropped, either as part of a mortuary ritual or more likely as a means of hygienically disposing of dead bodies.

Cranium 17 is a very complete cranium recovered in 52 pieces. It comprises the entire face, including much of the upper dentition (upper right C to M3 and upper left C to M2), the frontal bone, most of the sphenoid bone, the left parietal bone, the left temporal bone minus the mastoid process, and most of the occipital bone. The slight dental wear suggests that Cranium 17 belonged to a young adult.
Most of the fragmentation of the cranium involved dry bone breakage occurring long after death. 

However, there were two unhealed depressed fractures consistent with blunt force trauma from the same weapon (or ‘tool’ as the paper euphemistically describes it), resulting in penetration of the bone-brain barrier. Either injury would probably have been fatal: two suggests an intention to kill. Furthermore, the presence of two injuries caused by impact with the same object more or less rules out post-mortem damage to the cranium caused by it landing on a hard object when it was dropped into the pit, or by subsequent rock-falls.

Cranium 17 represent the earliest reasonably clear-cut case of interpersonal violence between humans leading to death. It demonstrates that this rather depressing aspect of human behaviour has an ancient origin.

References:

x
1.

Sala, N. et al., Lethal Interpersonal Violence in the Middle Pleistocene. PLoS One (2015).
x


Sorry seems to be the hardest word

Which do you think is the better response to the appalling incident where a little girl was hit and dragged along the pavement by a cyclist?

THIS:
“We at London Cycling Campaign were shocked to hear that a child had been hit by a cyclist on a pavement in Blackpool. Pavement cycling is both dangerous and illegal. We unreservedly condemn the thoughtless and selfish actions of the individual responsible. We wish the child a full and speedy recovery and our thoughts are with her and our family. We feel that it would be inappropriate to make any further comment at this time.”

OR the actual response to the incident?
Just read it and make up your own mind as to which response is more likely to gain the support of the non-cycling public.

Thursday, 21 May 2015

Earliest stone tools found in Kenya

3.3-million-year-old tool tradition significantly predates first humans

In recent years, a growing body of evidence has suggested that the making of stone tools predates the emergence of the earliest humans. In the 1990s, Oldowan-type tools dating to around 2.6 million years ago were found at the Gona River study area in Ethiopia. The tools slightly predated the then-earliest known humans, but as they were not associated with hominin remains there was no way of telling who the toolmakers had been. Towards the end of the decade, evidence of carcass butchery dating to around 2.5 million years ago was found at the nearby Bouri Formation. Bones of large mammals with cut-marks thought to be made by stone tools in the process of de-fleshing the carcasses were associated with australopithecine remains. Unfortunately, on this occasion, no actual stone tools were found.

Similarly, in 2010, it was claimed that animal bones from Dikika, Ethiopia, show cut-marks resulting from de-fleshing, and signs of having been struck with hammerstones to extract bone marrow. The remains are 3.39 million years old, early enough to preclude human involvement – but again no actual tools were found. It could not be ruled out that naturally-occurring sharp pieces of stone had been used. It is also possible that as the bones were buried in coarse-grained, sandy deposits, trampling by animals could have produced the marks. Taken as a whole, these finds made a good case for australopithecine tool making, but did not settle matters beyond reasonable doubt. Conclusive evidence was still lacking.

Such evidence has now been reported from the Kenya site of Lomekwi 3, just west of Lake Turkana. More than one hundred stone artefacts have been recovered, and at 3.3 million years old they predate even the recently-reported LD 350-1 human jawbone by half a million years. The artefacts include flakes and the cores from which they were struck. It has been shown that the cores were rotated as successive flakes were struck off, confirming that the flaking was intentional and not the result of accidental fracturing. Researchers have also managed to ‘refit’ one of the flakes back to the core from which it was struck. The tools are larger and heavier than typical Oldowan artefacts, and methods by which flakes were struck from cores was less effective. It is suggested that they represent a technology intermediate between the use of stone tools for pounding and hammering and the more flake-orientated Oldowan.

This pre-Oldowan technology has been named Lomekwian and is the final proof that hominins contemporary with Australopithecus afarensis (‘Lucy’s’ people) were making stone tools.

Reference:
Harmand, S.
et al., 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310-315 (2015).

Saturday, 25 April 2015

Did Proto-Aurignacian trigger Neanderthal extinction?

Tooth confirms that Proto-Aurignacian toolmakers were modern humans

A new study has confirmed that a lower deciduous (‘milk tooth’) incisor from Riparo Bombrini is from a modern human, based on its morphology. An upper deciduous incisor from Grotta di Fumane is also modern, based on the extraction of ancient mitochondrial DNA from it. Both sites are associated with the Proto-Aurignacian culture and confirm it to be a modern human rather than Neanderthal culture. The sites are around 41,000 to 39,000 years old.

The Proto-Aurignacian appeared around 42,000 years ago in Southwest and South-Central Europe. It is associated with ornaments, such as perforated shell beads, and it is characterized by bladelets with typical retouched artefacts such as Font-Yves points and Dufour bladelets. This industry has been linked to the Ahmarian tool tradition of the Levant and since the Ahmarian is attributed to modern humans, it has been widely-accepted that the Proto-Aurignacian reflects a westward migration of modern humans from Southwest Asia. However, up until now there has been a lack of supporting fossil evidence for this hypothesis.

The importance of this new confirmatory dental evidence is that they demonstrate that by 41,000 to 39,000 years ago, modern humans were present in Southern Europe. This date range coincides very closely with dates for the disappearance of Neanderthals from the region, with the implication that the spread of the Proto-Aurignacian was responsible for their demise.

References
:
x
x
1.  Benazzi, S. et al., The makers of the Protoaurignacian and implications for Neandertal extinction. Science 348 (6236), 793-796 (2015).
2.  Conard, N. & Bolus, M., Chronicling modern human’s arrival in Europe. Science 348 (6236), 754-756 (2015).
x


Tuesday, 7 April 2015

Evidence of interbreeding between archaic and modern humans – or just highly diverse morphology?

50,000-year-old Tam Pa Ling lower jawbone is a mosaic of archaic and modern features

Tam Pa Ling (‘Cave of the Monkeys’) is a cave site in Huà Pan Province, Laos. A fully-modern partial human skull (TPL1) was recovered in December 2009, followed a year later by a complete human lower jawbone (TPL2). The upper jawbone of TPL1 does not match with TPL2, so the two represent different individuals. The fossils are estimated to be from 46,000 to 63,000 years old, establishing an early presence of modern humans in Southeast Asia.

A newly-published study of the more recent discovery suggests that the TPL2 lower jawbone, though essentially modern, possesses a number of archaic attributes. The most obvious sign of modern affinities is the clear presence of a chin. However, viewed from the side, the jawbone is very robust, particularly at the position of the first and second mandibles. In this respect, TPL2 is closer to the archaic than the modern human condition.

While this mosaic could be evidence of modern humans interbreeding with archaic populations – possibly Denisovans or Homo erectus – the authors of the report take the view that early modern humans in the region simply possessed a large range of morphological variation.

Reference
:
x
Demeter, F. et al., Early Modern Humans and Morphological Variation in Southeast Asia: Fossil Evidence from Tam Pa Ling, Laos. PLoS One 10 (4), e0121193 (2015).x


Thursday, 12 March 2015

130,000 year old Neanderthal eagle talon necklace predates H. sapiens influence

Does evidence from Krapina, Croatia refutes ‘bow wave’ theory?

The popular view of the Neanderthals as dimwits has been in trouble for years, as evidence for Neanderthal symbolic behaviour has continued to accumulate. Up until now, however, it is not been possible to unequivocally rule out the influence of modern humans, who reached Europe around 46,000 years ago. The Châtelperronian culture for example, long put forward as evidence of Neanderthal behavioural modernity, has now been shown not to have begun until after the arrival of modern humans. It is assumed that the Neanderthals simply borrowed the trappings of modernity from their new neighbours.

In other regions such as Spain and Italy, the evidence for Neanderthal behavioural modernity has been attributed to what Sir Paul Mellars has described as a ‘bow wave effect’, i.e. long-distance interactions between Neanderthals and modern humans occurring several millennia before the latter become visible in the archaeological record.

This view is now seriously challenged by a new study of eight white-tailed eagle talons that were found at the Neanderthal site of Krapina, Croatia over a century ago. Researchers found 21 cut marks on the talons, and there were areas of high polish consistent with ‘use wear’ as the talons rubbed against each other. The implication is that they were mounted in a necklace or bracelet – clear evidence of symbolic behaviour. Furthermore, it was concluded that the talons come from at least three eagles, suggesting that considerable effort had gone into obtaining them. The white-tailed eagle is fairly rare and it is an aggressive apex predator, far from easy to catch or trap.

Associated faunal remains suggested that Krapina dates to the warm Eemian interglacial period. A direct date of 130,000 years old was obtained in 1995 – which means that it predates any possible influence from modern humans by more than 80,000 years.

References:
1.      Radovčić, D., Sršen, A., Radovčić, J. & Frayer, D., 2015. Evidence for Neandertal Jewelry: Modified White-Tailed Eagle Claws at Krapina. PLoS One, 11 March.


Monday, 9 March 2015

Dmanisi reconsidered

Implications of LD 50-1 jawbone and Spoor H. habilis study for ‘variable single species’ theory

In October 2013, Lordkipanidze and his colleagues reported the discovery of an adult skull from Dmanisi, Georgia. The fifth skull to be discovered at the site, it was complete and undeformed; it is the only known fully-preserved adult hominin skull from the early Pleistocene. They also put forward the radical suggestion that the various species often proposed for early African Homo (Homo habilis, Homo rudolfensis, Homo ergaster and Homo erectus) were all actually variants of the same species, and that early Homo was a single lineage which evolved over time without differentiating into multiple species. This conclusion is based on a claim that shape variation between the five Dmanisi skulls is roughly the same as that seen among the various early Homo skulls from East Africa, even though the former represents a single species and the latter are generally thought to represent several (Lordkipanidze, et al., 2013).

This suggestion must now be reconsidered in the light of last week’s announcement that the LD 50-1 partial lower jawbone places the origins of Homo at least 2.8 million years ago (Villmoare, et al., 2015); and Spoor and colleagues’ (2015) reappraisal of the OH 7 Homo habilis type specimen. The latter report that:
1.       The cranial capacity of OH 7 is estimated at between 729 and 824 cc, which is substantially larger than 500 to 700 cc typically cited and within the range of early Homo erectus;
2.       OH 7 is more primitive than the 2.33-million-year-old AL 666-1 upper jawbone provisionally assigned to Homo habilis, despite being 500,000 years younger.

Spoor and colleagues suggest that AL 666-1 cannot be placed within either Homo habilis or Homo rudolfensis. They do not investigate its true affinities further but suggest that their data is consistent with it belonging to Homo erectus. That it is more derived than Homo habilis implies that the origins of the latter must be sought even further back in time than 2.33 million years ago. The reporting that LD 50-1 is transitional between Australopithecus and Homo places the origin of the latter at around 2.8 million years ago. Putting the two reports together, the implication is that Homo was already diverse lineage by 2.33 million years ago, and that early human types were distinguished by facial morphology rather than by brain size.

Lordkipanidze and his colleagues noted that the morphological diversity within the five skulls recovered at Dmanisi is greater than that recorded for specimens recovered in Africa and assigned to different species. On the basis that the Dmanisi hominins all belong to the same species, they suggest that the morphological diversity in African fossil record of Homo 1.8 million years ago is better interpreted as demes of a single evolving lineage of Homo erectus rather than multiple species.

Given that Homo habilis, Homo rudolfensis and Homo erectus might all have emerged by 2.33 million years ago, an ancestor/descendant relationship between these species seems unlikely. It could be argued that the deme interpretation is more parsimonious than the traditional multiple species view.

Against this view, it has been suggested that the limb proportions of Homo habilis are more apelike (longer arms, shorter legs) than those of Homo erectus (Richmond, et al., 2002). The main problem is that in comparison to classic fossils such as ‘Lucy’ (Australopithecus afarensis) and the Turkana Boy (Homo erectus), we do not have a well-preserved example of Homo habilis. The evidence for the apelike limb proportions of Homo habilis largely rests on the two fragmentary skeletons KNM-ER 3735 and OH 62.

In the case of OH 62, the leg is represented by an upper section of the femur, the true length of which is uncertain. KNM-ER 3735 preserves even less limb detail. A re-evaluation of these specimens in comparison to fossil limb parts OH 34 and OH 35 suggests that the upper-to-lower limb ratio of OH 62 lies within the upper range of modern humans and lower range of chimpanzees; and that KNM-ER 3735 lies in the middle of the modern range, entirely outside the chimpanzee range. Based on these results, the limb proportions of Homo habilis were modern rather than apelike (Haeusler & McHenry, 2004).

Overall, these results appear to refute suggestions that Homo habilis should be reclassified as an australopithecine (Wood & Collard, 1999) and are consistent with the conclusions of Lordkipanidze and his colleagues.

References:

1.      Haeusler, M. & McHenry, H., 2004. Body proportions of Homo habilis reviewed. Journal of Human Evolution, Volume 46, pp. 433-465.
2.       Lordkipanidze, D. et al., 2013. A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early Homo. Science, 18 October, Volume 342, pp. 326-331.
3.       Richmond, B., Aiello, L. & Wood, B., 2002. Early hominin limb proportions. Journal of Human Evolution, Volume 43, pp. 529-548.
4.       Spoor, F. et al., 2015. Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature, 5 March, 7541(519), pp. 83-86.
5.       Villmoare, B. et al., 2015. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science, 5 March.

6.       Wood, B. & Collard, M., 1999. The Human Genus. Science, 2 April, Volume 284, pp. 65-71.

Thursday, 5 March 2015

The LD 350-1 jawbone

Introduction:
A partial lower jawbone and a number of teeth have been recovered from a surface outcrop of fossil-bearing sedimentary rock in the Ledi-Geraru research area, in the Afar region of Ethiopia. This region has long been associated with the fossils of early hominins. The jawbone has been assigned to Homo (species indeterminate) (Villmoare, et al., 2015). The age of the jawbone is constrained by stratigraphic and palaeomagnetic considerations to between 2.80 and 2.75 million years old (DiMaggio, et al., 2015). This means that LD 350-1 is at least 400,000 years older than the earliest previously-known fossil assigned to Homo. The findings are published as two articles in the journal Science.

What was our previous understanding of human origins?
The conventional view is that the first human species was Homo habilis (‘Handy man’). Discovered in 1960 and announced as a new species four years later, it is believed to have evolved from an australopithecine ancestor though which is disputed. Possibilities include the South African Australopithecus africanus and Australopithecus afarensis from East Africa (or its probable descendant species Australopithecus garhi). The famous ‘Lucy’ belongs to Australopithecus afarensis. In comparison to a modern human, Homo habilis was small brained and its limb proportions (short legs, long arms) were still very apelike. However, the skull was less massively-built than an australopithecine; the upper and lower jawbones were within the human size range; and the feet and thumb joints were humanlike (Conroy, 1997). Homo habilis is known in the fossil record from 2.33 to 1.44 million years ago (Kimbel, et al., 1997; Spoor, et al., 2007). It is then presumed to have given rise to Homo erectus. Although still small-brained in comparison to a modern human, the limb proportions of Homo erectus are similar to those of later humans. Homo erectus first appears in the fossil record 1.8 to 1.9 million years ago (Wood, 2011).

This conventional view has a number of problems. Firstly, a second species, Homo rudolfensis is now known to have been contemporary with Homo habilis. First proposed in 1972, it was confirmed as a separate species in 2012 (Leakey, et al., 2012). How Homo rudolfensis fits into the bigger picture is far from clear: some have noted similarities to an earlier hominin, Kenyanthropus platyops (‘Flat-faced man of Kenya’) and it is possible that Homo rudolfensis belongs in Kenyanthropus rather than Homo.

Another problem is that the earliest example of Homo habilis, a 2.33 million year old upper jawbone known as AL 666-1 from Hadar, Ethiopia might in fact be something other than Homo habilis. The oldest uncontested example of Homo habilis is only 1.9 million years old (Lieberman, 2007) and given that the species also persisted well after the appearance of Homo erectus an ancestor/descendant relationship seems unlikely. Instead, it has been suggested that the two species shared a common ancestor (Spoor, et al., 2007).

Finally, it has been suggested that the late australopithecine species Australopithecus sediba from South Africa, which dates to around 2 million years old (Pickering, et al., 2011) is a more plausible ancestor for Homo erectus than is Homo habilis (Berger, et al., 2010).

Could LD 530-1 be an australopithecine?
The date of 2.8 million years ago puts it just after the time of Australopithecus afarensis (3.9 to 3.0 million years ago) and before the late australopithecine species Australopithecus garhi (2.5 million years ago).Given that the Australopithecus garhi is thought to descendant of Australopithecus afarensis, LD 350-1 is in the right place at the right time to be a part of that lineage. In terms of size, both the jawbone and the teeth are within the Australopithecus afarensis range, albeit towards the lower end. However, most other respects, the mandibular and dental characteristics of LD 350-1 fall outside the range for Australopithecus afarensis. The dentition is also reduced (and therefore more humanlike) in comparison to Australopithecus garhi, which would appear to bump the latter from the lineage leading to Homo. Overall, LD 350-1 appears to be transitional between Australopithecus and Homo and is likely to represent the earliest-known example of the latter.

What are the implications if LD 350-1 is indeed Homo?
Models that posit an australopithecine ancestor for Homo from the period 2.5 to 2.0 million years ago (e.g. Australopithecus garhi or Australopithecus sediba) would be ruled out. Instead, Homo diverged from Australopithecus much earlier than hitherto believed. Notably, 2.8 million years ago coincides with a shift to a more arid climate in Africa, suggesting a link between climate change and the emergence of Homo. The fossil record of Ledi-Geraru records a shift to a more open habitat of grasses or low shrubs at around this time.

Reboot for Homo habilis
In a separate study, published in the journal Nature, Fred Spoor and colleagues (Spoor, et al., 2015) carried out a reconstruction of the 1.8 million year old Homo habilis holotype specimen OH 7. The results suggest that the species was larger-brained than previously believed, within the range of Homo erectus. It was also found that the dentition of OH 7 is more primitive than the 2.33 million year old AL 666-1, suggesting that the latter cannot be Homo habilis – but implying that the origins of Homo habilis go back even further. The study did not consider the affinities of AL 666-1 any further but speculated that it could be early Homo erectus. By 2.33 million years ago, the Homo lineage was already apparently diverse, with early human species distinguished from one another more by gnathic morphology than by brain size. The reporting of the early Homo jawbone LD 350-1 dovetails neatly with this study.

What species is LD 350-1?
It is more primitive than Homo habilis but nevertheless lies within Homo. Its describers did not assign a species to it, but it is likely that it will be eventually recognised as a new species within Homo; the earliest human species yet. 

References:

1.      Berger, L. et al., 2010. Australopithecus sediba: A New Species of Homo-Like Australopith from South Africa. Science, 9 April, Volume 328, pp. 195-204.
2.       Conroy, G., 1997. Reconstructing Human Origins: A Modern Synthesis. New York, NY: W. W. Norton & Company, Inc..
3.       DiMaggio, E. et al., 2015. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science, 5 March.
4.       Kimbel, W., Johanson, D. & Rak, Y., 1997. Systematic Assessment of a Maxilla of Homo From Hadar, Ethiopia. American Journal of Physical Anthropology, Volume 103, pp. 235-262.
5.       Leakey, M. et al., 2012. New fossils from Koobi Fora in northern Kenya confirm taxonomic diversity in early Homo. Nature, 9 August, Volume 488, pp. 201-204.
6.       Lieberman, D., 2007. Homing in on early Homo. Nature, 20 September, Volume 449, pp. 291-292.
7.       Pickering, R. et al., 2011. Australopithecus sediba at 1.977 Ma and Implications for the Origins of the Genus Homo. Science, 9 September, Volume 333, pp. 1421-1423.
8.       Spoor, F. et al., 2015. Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature, 5 March, 7541(519), pp. 83-86.
9.       Spoor, F. et al., 2007. Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature, 9 August, Volume 448, pp. 688-691.
10.    Villmoare, B. et al., 2015. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science, 5 March.

11.    Wood, B., 2011. Did early Homo migrate “out of ” or “in to” Africa?. PNAS, 28 June, 108(26), p. 10375–10376.

Saturday, 21 February 2015

Is the steppe migration theory of Indo-European origins correct after all?

Genetic study challenges Anatolian farmer hypothesis

One of the longest-running debates in the study of prehistory is the origin of the Indo-European language family. This group includes languages spoken from Great Britain and Ireland to India the steppes of Central Asia, and a connection between them was established as far back as the late eighteenth century. It is assumed that all originated from a single mother tongue, Proto-Indo-European (PIE), but where was PIE spoken?

Until the 1980s, the favoured Indo-European homeland was the Pontic-Caspian steppes north of the Black Sea and Caspian Sea. In a series of papers published from the 1950s through to the 1970s, Lithuanian-born Marija Gimbutas identified the Proto-Indo-Europeans with the Kurgan culture, named for a Russian word for the burial mounds with which the culture is associated. The Kurgan people originated in the lower Volga basin and the lower Dnieper region around 4500 BC. They lived as nomadic pastors, with an economy based on sheep, goats, cattle and pigs. Gimbutas saw them as highly-mobile, warlike people who used ox-drawn wagons and horses for transport. Between 4400 and 2800 BC, the Kurgan people mounted a series of hostile incursions from the steppes into Europe, Anatolia, the Caucasus, India and Central Asia. The peaceful, settled Neolithic farmers living in the regions were no match for the invaders, whose language (PIE) and culture came to predominate.

Although some disputed the warlike nature of the Kurgan people, the steppe hypothesis was widely accepted. However, in 1987, British archaeologist Colin Renfrew put forward a rival view in which he claimed that PIE was spoken and dispersed by Neolithic farmers originating from Anatolia before 6500 BC. The spread of agriculture distributed their language over a vast area. From Anatolia, the expansion had moved into Greece and onwards across Europe in wave of advance, expanding generation by generation as populations grew. Renfrew offered a choice of two scenarios as to the spread of the Indo-Iranian sub-family of languages: the first proposed a simple wave of advance similar to that proposed for Europe. The second invoked a modification of the steppe-invader model. Once the European wave of advance reached the steppe, nomadic pastoralism developed and the pastors moved swiftly east across the steppes and into Iran and northern India. Renfrew later came down in favour of this second scenario.

The Renfrew model is supported by archaeological and genetic evidence for an agricultural expansion into Europe, with Neolithic farmers both replacing and intermarrying with existing Mesolithic hunter-gatherers. Further support has come from a 2012 study in which Bayesian statistics were applied to Indo-European languages. The results suggested that PIE originated in Anatolia and began to break up into its daughter tongues between 7500 and 6000 BC.

Despite the success of the Anatolian hypothesis, it is not without its faults. A common criticism is that PIE contains reconstructed words for the wheel and wheeled vehicles, which were not invented until long after the agricultural expansion into Europe.

The main weakness of the steppe model has been a lack of evidence for a major migration from the Eurasian steppe at that time. However, a study of ancient DNA obtained from just under a hundred Europeans living between 6000 and 1000 BC may address this issue. The results confirm that farmers reached Europe from Southwest Asia between 6000 and 5000 BC, but they also indicate a second, later migration. A close match was found between Yamnaya culture steppe pastors from Russia and Ukraine, dating to 3000 BC, and individuals of the Corded Ware culture of Northern Europe, dating to 2500 BC. The similarities indicate a large-scale migration into Europe from the east. While the language these migrants spoke is unknown, it probably originated in the Yamnaya homeland.

Consistent with these results is a new linguistic study suggesting that PIE originated around 4000 BC rather than between 7500 and 6000 BC. However, the methodology used has been criticised by the authors of the 2012 study.

It is also possible that the Yamnaya data represents a secondary migration of people descended from the original PIE-speaking Anatolian farmers, in which case the Yamnaya people might have spoken a derived Indo-European language ancestral to the present-day Balto-Slavic group rather than PIE itself.

Overall, the genetic results suggest that the true picture might be a synthesis of both Anatolian and steppe-migration models.

References:
(W. Haak et al. http://doi.org/z9d; 2015)

Saturday, 14 February 2015

Pluto: Diary of an ex-planet

In the original Star Wars movie, the planet Alderaan, home of Princess Leia’s adoptive parents, was blasted out of existence by the Empire’s Death Star on the orders of the villainous Grand Moff Tarkin. The demise of the planet Pluto was an altogether less spectacular affair. On 24 August 2006, the International Astronomical Union simply ruled that it was no longer a planet. Nobody much under the age of eighty could remember a time when the Solar System did not contain nine planets, but now we were being told that henceforth we would have to make do with only eight. It was the final indignity for this little world, once believed to be the Ultima Thule of the Solar System, a world whose fortunes it must be admitted had been in steady decline ever since its discovery by the American astronomer Clyde Tombaugh in 1930.

For a world much smaller than our own Moon, Pluto has punched above its weight in terms of the attention it has received over the years from astronomers and the general public alike. Its discovery made headlines, and its demotion sparked protests. It is set to make the news again when NASA’s New Horizons space probe arrives there in July 2015 after a decade-long voyage. This short (6,000 word) ‘nanobook’ examines the rise and fall of this enigmatic world; what we currently know about it; and how it turned out not to be the Solar System’s farthest place, but part of a vast realm of icy worlds otherwise unobserved prior to the 1990s.

The quest for Planet X
The story of Pluto’s discovery goes back to the beginning of the last century, when the American businessman and astronomer Percival Lowell came to the conclusion that anomalies in the orbit of Uranus could be explained by the existence of a large planet beyond the orbit of Neptune. Lowell calculated that what he termed ‘Planet X’ (X for unknown) was seven times more massive than the Earth and was in an orbit that took it round the Sun once every 282 years. Similar calculations had led to the discovery of Neptune in 1846, but subsequent observations suggested that the picture was incomplete. Astronomers began to suspect that more than one planet was affecting the orbit of Uranus.
Lowell, also known for his belief in canal-building Martians, was responsible for the construction of the Lowell Observatory at Flagstaff, Arizona in 1894. The observatory was initially set up to study Mars, but in 1905 Lowell decided to tackle the Planet X problem. Searches were carried out at the observatory between 1905 and 1907 and again in 1914, but no new planet was found, and Lowell’s death from a stroke in 1916 temporarily halted the search. Searches carried out by Milton L. Humason at the Mount Wilson Observatory in 1919 also proved fruitless.

In 1926, Vesto Melvin Slipher was appointed Director of the Lowell Observatory, and decided to resume the quest for Planet X. He engaged the services of Clyde Tombaugh, a young amateur astronomer who had impressed him with the quality of his astronomical drawings of Mars. Using a 13-inch refracting telescope built specially for the task, Tombaugh undertook one of the most meticulous searches in the history of observational astronomy. His method was to photograph the same area of the sky twice, then compare the images. If any of the innumerable objects on the plates had moved between the two exposures, it would have to be a comet, an asteroid, or the new planet. When the plates were compared using a device known as a blink-comparator, such an object would appear to jump. Tombaugh’s efforts were rapidly rewarded and plates exposed on 23 and 19 January 1930 showed a faint dot that moved between the two exposures. Seven weeks of careful checking followed to rule out the possibility of an error, but there was none. Tombaugh had found a new planet. On 13 March (the 149th anniversary of Sir William Herschel’s discovery of Uranus and what would have been Percival Lowell’s 75th birthday), the observatory went public. The new planet was only six degrees away from the position forecast by Lowell, who now seemed to have been vindicated.

The Incredible Shrinking Planet
The discovery of Planet X made newspaper headlines across the world: “See another world in sky” was one example. “Years of search add new planet to the Solar System” proclaimed another. It fell to the Lowell Observatory to choose a name for the new planet, and there were plenty of suggestions. Eventually the name Pluto was adopted, proposed by the 11 year old English schoolgirl Venetia Burney. Pluto was a later name for Hades, the Greek god of the underworld. It seemed an appropriate name for the remote world, but the first two letters (PL) also commemorated Percival Lowell. Today, the monogram is the astronomical symbol used for Pluto.

Pluto soon lent its name to the Walt Disney cartoon character Pluto the Pup and to the newly-discovered element plutonium, but amid this blaze of publicity one rather important point was overlooked. Pluto seemed to be too small to be Lowell’s Planet X. Early estimates suggested that it was no bigger than Earth, and by 1949 Dutch-born astronomer Gerard Kuiper had estimated its diameter at 10,300 km (6,400 miles) or around eighty percent that of Earth. Kuiper was hampered by the fact that even the largest telescopes in the world at that time were unable to show a proper disk, and there was a large uncertainty in the figure. However, the new 200-inch Hale Telescope at Mount Palomar, California came into operation that year, and the following year Kuiper and Humason revised Pluto’s diameter downwards to 5,800 km (3,600 miles), making it smaller even than Mars.
Another problem was Pluto’s orbit. The orbital period of 248 years was not wildly different from the figure calculated by Lowell, but in every other respect the orbit was very strange indeed. The orbits of the planets are not perfectly circular, but stretched out in a slight ellipse. The extent to which an orbit depart from true circularity is known as the eccentricity, and in Pluto’s case it very high: the minimum of distance from the Sun, or perihelion is 29 astronomical units; the maximum distance from the Sun, or aphelion, is 49 astronomical units. The astronomical unit was historically defined as Earth’s average distance from the Sun, but it is now defined exactly as 149,597,870.7 km (about 93 million miles). Neptune is 30 astronomical units from the Sun, so for part of its ‘year’, Pluto is actually closer to the Sun as was the case between 1979 and 1999.

Also a peculiarity is the orbital inclination: if the plane of the Earth’s orbit around the Sun is taken as a datum, then the orbital inclination of Pluto is 17 degrees. For comparison, Mercury’s orbital inclination is just over 7 degrees and no other planet even exceeds 3.5 degrees. The high eccentricity and inclination of Pluto’s orbit had more in common with an asteroid than a planet.
An early Pluto-sceptic might have been the British classical composer Gustav Holst, best known for his seven-movement The Planets: Suite. It was composed during World War I and included all the then-known planets apart from Earth. Pluto was discovered four years before Holst’s death, but he declined to compose an additional movement.

Astronomers still lacked a definitive figure for Pluto’s diameter and looked to occultations (eclipses) of stars as Pluto passed in front of them as a means of solving the problem. By timing the moments when a star disappeared and reappeared, it would be possible to calculate the diameter of the planet. In 1978, astronomers at the US Naval Observatory at Flagstaff began a series of photographic observations with a view to predicting future occultations. They noticed that Pluto appeared dumbbell-shaped on some of the plates, suggesting the existence of a fairly large moon, and further observations at Mauna Kea, Hawaii, obtained separate images of the two bodies. The moon was named Charon after the ferryman who rowed the dead across the River Styx into the underworld. Charon and Pluto are 19,571 km (12,161 miles) apart centre to centre, but Charon does not ‘orbit’ Pluto in the strict sense of the word. Instead, rather like a pair of waltzing ice-skaters, the two revolve around a common centre of gravity once every six days and nine hours. The common centre of gravity – the barycentre to use the technical term – is located above the surface of Pluto, leading to the suggestion that the pair should be classed as a binary planet.

The two bodies periodically eclipse one another as seen from Earth, and by timing the eclipses it was possible to determine the diameter of both. Charon’s orbit is steeply inclined, so such eclipses only occur in series well over a century apart, but as good luck would have it, such a series occurred in the mid to late 1980s, enabling the diameter of both bodies to be estimated. Pluto is just 2,322 km (1,443 miles) in diameter, rather smaller than the Moon. Charon is 1207 km (750 miles) in diameter, quite large in comparison, and the two are 19,571 km (12,161 miles) apart centre to centre. Even the 1950 figure obtained by Kuiper and Humason had turned out to a gross over-estimate.

By application of Newton’s law of gravity, the combined mass of the Pluto-Charon system could be calculated, and once the location of the barycentre had been determined, the individual masses of the two bodies could also be calculated. Pluto’s mass was found to be less than a fifth that of the Moon – far too low to have any significant effects on the orbits of Uranus and Neptune – and Charon’s mass is 11.6 percent that of Pluto.

By measuring small changes in luminosity, astronomers also found that the two bodies are locked face-to-face. A ‘day’ on both lasts six days and nine hours, so a ‘month’ on Pluto lasts as long as the ‘day’. From one hemisphere of Pluto, Charon hangs motionless in the sky, but from the other it is never seen at all.

However, the bottom line was that Pluto could not be Planet X, and its discovery so close to where Lowell had predicted a planet would be found was a pure coincidence. There was a revival of interest in finding the real Planet X, but it was short-lived. In 1989, the mystery was finally cleared up when the Voyager 2 space probe made a flyby of Neptune, enabling an accurate figure to be obtained for the planet’s mass. It was found that previous estimates were incorrect: when the new figure was used it was sufficient to account for the orbit of Uranus without any need for another planet to be involved. Lowell’s planet had never existed; and soon Pluto’s very status as a planet began to be questioned. 
How could an object with less than a fifth the mass of the Moon be considered a planet?

Museums and planetariums began to omit Pluto from their displays, most notoriously the Rose Center for Earth and Space at the American Museum of Natural History in New York. School children wrote to director Neil deGrasse Tyson to complain and demand Pluto’s reinstatement. The New York Times ran the headline “Pluto’s not a planet? Only in New York” leading to the misconception that the museum had acted alone and to humorous suggestions that Pluto wasn’t big enough to make it in NYC. More seriously, astronomers began to ask the question, what exactly is a planet and if Pluto isn’t one then what is it?

The Kuiper Belt
Beyond the orbit of Neptune lies a doughnut-shaped region of space known as the Kuiper Belt, which astronomers believe might contain 100,000 objects with diameters of 100 km (62 miles) or more. Much larger than the asteroid belt between Mars and Jupiter, the Kuiper Belt extends from 30 out to 50 astronomical units from the Sun. Like the asteroids, Kuiper Belt objects are believed to be left over from the formation of the Solar System, but they are composed primarily of ice rather than rock. The Kuiper Belt is named for Gerald Kuiper, who postulated its existence in 1951, although similar suggestions were made by the Irish astronomer Kenneth Edgeworth as early as 1943.

The first Kuiper Belt object was located in 1992 and given the provisional designation of 1992 QB1. The 200 km (125 mile) diameter body lies just outside the orbit of Pluto. Its discoverers wanted to name it ‘Smiley’ after John le Carré’s fictional intelligence officer, but the name had already been allocated to an asteroid to honour the American astronomer Charles Smiley. Consequently, 1992 QB1 remained unnamed, and it is now usually referred to simply as ‘QB1’. Other discoveries soon followed, and over a thousand Kuiper Belt objects are now known.

Kuiper Belt objects fall into two main classes: ‘classical’ objects with orbits of fairly low eccentricity; and ‘resonant’ objects that are in ‘orbital resonance’ with Neptune, that is to say their orbital period and that of Neptune can be expressed as a simple numerical ratio. For example, an object in a 2:3 resonance will complete two orbits of the Sun while Neptune is completing three. The resonant objects are in rather more eccentric orbits than the classical objects, and it is believed that they were perturbed into their present orbits by Neptune as it migrated outwards from the Sun during the early history of the Solar System.

Astronomers began to take the view that Pluto was nothing more than a Kuiper Belt object, specifically one of around 200 objects in a 2:3 orbital resonance with Neptune. Although it was by far the largest such object, it was felt that its size was not necessarily unprecedented. Neptune’s largest moon Triton probably started life as a Kuiper Belt object. Triton’s orbit around Neptune is retrograde, i.e. in the opposite direction to that of Neptune and indeed the majority of Solar System bodies. Retrograde satellites cannot have formed from the primordial solar nebula alongside their parent bodies and must therefore have been captured from elsewhere.  Most are small, but at 2,707 km in diameter, Triton is rather larger than Pluto.

The question was does being a Kuiper Belt object automatically disqualify Pluto from being a planet? On the face of it, the answer was ‘no’, but it did raise the question as to what is and isn’t a planet. Strange as it might seem, few had considered this matter before the latter part of the last century. The reason was that there had never been a need for a formal definition of a planet – it is obvious that Venus, Earth, Mars, Jupiter, etc. are planets. Pluto, though small, was still thought to be larger than Mercury and hence pose no problem. Only when it became clear that Pluto is actually a lot smaller than the Moon did astronomers start to ask questions.

Early Kuiper Belt discoveries were all far smaller than Pluto, but then between 2000 and 2003, larger objects began to turn up. These included Varuna, Quaoar and Sedna, all of which were around 1000 km (620 miles) in diameter. These new objects were all named for mythological names associated with creation in various traditions. Though these bodies were still rather smaller than Pluto, there was no reason to suppose that even larger objects would not be found, and so it proved.
At the time of its discovery, Sedna was the most distant Solar System object ever observed, lying at a distance of three times that of Neptune from the Sun – but it is in a highly eccentric orbit and actually spends most of its 11,400 year orbital period at far greater distances. At perihelion, it is 76 astronomical units from the Sun, but the aphelion distance is a staggering 937 astronomical units.  At that distance, even travelling at the speed of light, it would take more than five days to get there.
Even when close to perihelion, Sedna lies well outside the main Kuiper Belt and its motion against the starry background is very slow. On 5 January 2005 a team based at Mount Palomar discovered an object on plates taken some 15 months earlier that had been initially ignored because it had been moving too slowly against the background stars to be picked up by the team’s image-searching software. However, the discovery of Sedna had made the team recalibrate their software, and so the discovery was made. The Palomar team nicknamed the new body ‘Xena’ after the fictional TV character.

Like Sedna, ‘Xena’ was located beyond the main Kuiper Belt. The orbit was again highly eccentric, with a perihelion of 38 astronomical units and aphelion of 98 astronomical units, but unlike Sedna, ‘Xena’ was fairly close to aphelion when it was found. The orbit was steeply inclined at 44 degrees. ‘Xena’ was probably perturbed into its present orbit by Neptune, and is referred to as a ‘scattered disk object’.

An announcement was not made immediately because the team wanted to make more observations to allow more accurate determinations to be made of the object’s size. Fears that another team might beat them to it finally prompted an announcement on 29 July, by which time it was suspected that ‘Xena’ was slightly larger than Pluto. A few months after the announcement, ‘Xena’ was found to have a moon, enabling its mass to be determined. Regardless of its diameter, ‘Xena’ was 27 percent more massive than Pluto, bringing to a head the whole debate on the latter’s status as a planet.
One thing was for certain – if Pluto was a planet, than a more massive object like ‘Xena’ had to be also. Conversely, if ‘Xena’ wasn’t a planet, then neither was Pluto. NASA promptly nailed their colours to the mast, declaring that the Solar System’s tenth planet had been found. With their New Horizons space probe being readied for a ten year flight to Pluto, NASA possibly didn’t want to be seen to be spending 650 million dollars on a mission to an ex-planet.

Motivated by the discovery of Sedna and the possibility of even larger objects being found, the International Astronomical Union had by now set up a 19-member committee to consider possible definitions of a planet. On 16 August 2006, a draft proposal was published at 26th General Assembly in Prague. It stated: “A planet is a celestial body that (a) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (b) is in orbit around a star, and is neither a star nor a satellite of a planet.
This concise and testable definition of a planet would have recognised ‘Xena’ as a planet and retained Pluto’s membership of the Solar System’s Premier League – but there was a problem and it echoed a debate that had occurred two centuries earlier. The issue of what is and isn’t a planet wasn’t new after all.

When is a planet not a planet?
In 1766, the German astronomer Johann Daniel Titius noticed that the distances from Sun of the then-known planets followed a simple numerical rule. He considered the numerical sequence 4, 7, 10, 16, 28, 52, 100, which is generated by the formula 4 + 3x, where x = 0, 1, 2, 3, etc., and he noticed that if Earth’s distance from the Sun is taken to be 10, the sequence gives a very good approximation to the distances from the Sun of Mercury (actual distance 3.9), Venus (actual distance 7.2), Mars (actual distance 15.2), Jupiter (actual distance 52.0) and Saturn (actual distance 95.4). The rule was later popularised by Johann Elert Bode, Director of the Berlin Observatory and became known as Titius-Bode Law (or less accurately Bode’s Law). Nobody really took much notice until 1781 when Uranus was discovered and found to neatly fit the rule with a predicted distance of 196, very close to the actual distance of 192. The only problem with the rule was the absence of a known planet in the orbit corresponding to 28 units from the Sun. Bode believed that such a planet might actually exist, and urged astronomers to begin a search for it.

If it existed at all, the unknown planet would have to be very small to have hitherto escaped notice, and as the eighteenth century drew to a close an international group led by astronomers Johann Hieronymus Schröter and Baron Franz Xavier von Zach met at the German town of Lilienthal and resolved to try to find it. Giving themselves the humorous appellation ‘The Celestial Police’, they began a systematic search with each astronomer being responsible for a particular region of the zodiac, that region of the sky in which all the then-known planets lie.

On 1 January 1801 – the very first day of the nineteenth century – a discovery was made by the Italian Giuseppe Piazzi. Ironically, he was not a founder member of the Celestial Police, although he was later invited to join the group. Piazzi was actually compiling a new star catalogue, but he picked up a star-like object that shifted its position from hour to hour. At first he thought he’d found a comet, but he soon begun to suspect it might be something else altogether. In the weeks that followed he observed it 24 times, but before he could complete his observations he was taken ill. By the time he had recovered, the object had disappeared into the evening twilight. However, the brilliant young German mathematician Carl Friedrich Gauss was able to calculate an orbit from Piazzi’s interrupted observations and on New Year’s Eve 1801, ‘policeman’ Heinrich Olbers recovered the object, which received the name Ceres after the Roman goddess of agriculture.

Ceres was immediately recognised as the missing planet, but within months Olbers had found a second object in the gap, which he called Pallas. Fellow ‘policeman’ Ludwig Harding found a third object two years later, which he named Juno, and Olbers discovered a fourth in 1807, which he named Vesta. No further discoveries were made in the years that followed, and the year before Schröter’s death in 1816, the Celestial Police were disbanded. All four objects are very small and even Ceres, which is by far the largest, is only 960 km (597 miles) in diameter. Nevertheless, they were for several decades considered to be planets. Then, from around the middle of the nineteenth century, further discoveries were made, and the four ‘planets’ were eventually downgraded to asteroids. However, Ceres is large enough to be spherical, and under the International Astronomical Union’s 16 August draft proposal this Rutland of the Solar System stood to regain the planetary status it had lost a century and a half earlier.

It was proposed to recognise both Ceres and ‘Xena’ as planets, and in addition Charon, by virtue of its size in relation to Pluto, would also be elevated to planetary rank. The Pluto-Charon system would be considered a binary planet, the only such entity in the Solar System. The resulting twelve-planet Solar System would not have been a problem as such, but it would almost certainly have been only the thin end of the wedge, with objects such as Varuna, Quaoar and Sedna scrambling to join the queue for planetary recognition. American astronomer Mike Brown, discoverer of both Sedna and ‘Xena’, has claimed that around fifty known Kuiper Belt objects are likely to fit the roundness criterion, that more than eighty probably do, and that the final tally could run to as much as 350.

…when it’s a dwarf planet
After much debate, the initial draft proposal was rejected by the International Astronomical Union members present at the Prague conference, and on 24 August 2006 they voted that a planet is: “... a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighbourhood around its orbit.

As Kuiper Belt objects, Pluto and Eris did not meet the definition, neither did Ceres, as merely the largest member of the asteroid belt between Mars and Jupiter. However, there was considerable controversy over the meaning of ‘has cleared the neighbourhood around its orbit’ as most of the recognised planets including Earth share their orbits with large numbers of asteroids. Pluto was downgraded to the confusing rank of ‘dwarf planet’, a status which was also accorded to Ceres and ‘Xena’. It was made clear that despite containing the word ‘planet’, a ‘dwarf planet’ is not actually a planet. Soon after, ‘Xena’ was officially given the name Eris after the Greek goddess of discord – a fitting name in the circumstances.

Pluto’s demotion did not go down well, and was particularly unpopular in the United States where the American Museum of Natural History received a fresh round of protest letters from irate schoolchildren. Older Americans were also dismayed: after all, Pluto was discovered in America by an American. In Clyde Tombaugh’s home state of Illinois, the state senate passed a resolution to re-establish its planetary status and ruled that 13 March 2009 would be declared ‘Pluto Day’.
The new definition was criticised as confusing and unnecessarily complicated. There were complaints that only four percent of the International Astronomical Union’s membership had voted on the resolution, and that most of these were not planetary scientists. There is little doubt that the resolution adopted at Prague was a dog’s dinner: aside from the confusion over what constitutes neighbourhood clearing, you do not have to be Star Trek’s Mr Spock to see that it is illogical to call something a ‘dwarf planet’ and insist that it is not a planet. Proponents of the definition argue that a hundred or more Solar System planets are too many, but again the logic is flawed. The current membership of the United Nations is 193 member states, but nobody is suggesting that the likes of Monaco, Andorra and San Marino be downgraded to ‘dwarf countries’ that aren’t actually countries at all.

The late Sir Patrick Moore, long of the opinion that Pluto is not a proper planet, argued for the much simpler definition that Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune are planets and everything else isn’t. Such a definition might not be particularly scientific, but it certainly has the benefit of being something that everybody can understand, and it could easily be amended if a trans-Neptunian object significantly larger than Pluto or Eris were to turn up.

The problem really lies with the word ‘planet’ and the hidden assumption namely that it can be used to define a generic class of object, which is clearly not the case. Even the traditional division between rocky planets like Earth and gaseous planets like Jupiter is an over-simplification. Uranus and Neptune contain less hydrogen and helium than Jupiter and Saturn, and are now thought of as ‘ice giants’ rather than ‘gas giants’. Kuiper Belt objects such as Pluto and Eris form another class of object, as does the asteroid Ceres, but that actually tells us nothing about whether or not they should be classed as planets. Supposing these last three bodies were the size of Earth? Under the Prague resolution, they would still be classed as dwarf planets. Conversely, were Ceres located where Earth currently is, it would qualify as a planet. Again, this does not seem to be very logical. Another issue is that the current system makes no distinction between planet-sized moons such as Ganymede and kilometre-sized objects such as S/2003 J9. Both are simply classed as moons of Jupiter. Should being a moon necessarily disbar something from also being a planet, regardless of its size?
Astronomers could perhaps take a lesson from the ‘lumping and splitting’ debate that goes on in biology. ‘Lumpers’ try to cram as many species as possible into a single taxonomic category; ‘splitters’ do the exact opposite, requiring very little justification for erecting new species and genera. The word ‘planet’ is a classic example of ‘lumping’. To be useful, it needs to be split into distinct classes that would group together related classes of objects without being afraid to cut across traditional lines of classification. For example, the class ‘rocky planet’ or ‘terrestrial planet’ could include not just Mercury, Venus, Earth and Mars but also Ceres and the Moon. As for Pluto, what is wrong with calling it a ‘Kuiper Belt planet’?

Let’s not forget the science
The debate over Pluto’s status has unfortunately overshadowed the fact that there is a lot of very interesting science waiting to be done there. At the time of writing, NASA’s New Horizons space probe is just under a year away from Pluto; it is due to make a flyby on 14 July 2015. Provided all goes well, it will tell us more about Pluto in a few hours than we have learned in the last eighty-five years. Nevertheless, thanks to the Hubble Space Telescope and new generation ground-based telescopes, we know a lot more about Pluto than we did a few years ago.

Pluto is now known to have at least five moons including Charon – an impressive total considering Mercury, Venus, Earth and Mars can only muster three moons between them. Ahead of the launch of New Horizons, the Pluto Companion Search Team used the Hubble Space Telescope to try and identify further Plutonian moons. The team were successful and announced the discovery of two new moons in October 2005, which received the names Nix and Hydra in reference to the initials NH for New Horizons. A fourth moon, Kerberos, was announced in July 2011 and a fifth, Styx, in July 2012. All these new moons are far smaller than Charon, and are also further away from Pluto. Like Charon, they orbit the Pluto-Charon barycentre rather than Pluto itself.

Styx, the smallest and closest, is between 10 to 25 km (6 to 15 miles) in diameter, and lies 42,000 km (26,000 miles) from the barycentre, or just over twice the distance of Charon; Hydra, the largest and outermost, is114 km (70 miles) in diameter and lies 64,750 km (40,000 miles) from the barycentre, or about three and a half times the distance of Charon.

According to one theory, the moon system came into being when Pluto collided with another Kuiper Belt object. The impactor lost substantial mass, but survived to become Charon; meanwhile some of the debris flung up into space by the collision coalesced to form the four smaller moons. More recently, it has been suggested that the entire Pluto system was formed as a result of a collision between two large Kuiper Belt objects of about the same size. The cores merged to form Pluto and debris ejected from the collision formed a disc around the merged body from which Charon and the smaller moons coalesced.

The Hubble Space Telescope has enabled maps to be made of the surface of Pluto. Due to the immense distance, it can only resolve variations that are several hundred kilometres across and requires the use of complex computer techniques to achieve even that. Nevertheless, they show that Pluto’s surface is highly varied and there are considerable changes in both brightness and colour. Overall, Pluto is mottled orange and black in appearance, whereas Charon appears bluish.
Comparative spectroscopic analysis, facilitated by the series of eclipses in the 1980s, showed that the surface compositions of Pluto and Charon differ – Pluto’s surface is coated with frozen nitrogen mixed with traces of methane and carbon monoxide, whereas that of Charon is largely composed of ice. Their internal composition is unknown, but Pluto’s density suggests that it is comprised of around 70 percent rock and 30 percent water ice. Charon is less dense, and contains less rock. Pluto is thought to be a differentiated body with a rocky core and icy mantle; Charon may lack a distinct core. Pluto also has a tenuous but definite atmosphere, composed largely of nitrogen, but it is only present when Pluto is closer to the Sun; for most of the Plutonian ‘year’ the atmosphere lies frozen on the surface.

Thanks not just to Hubble but to considerable advances in ground-based astronomical techniques, we know considerably more about Pluto than we did forty years ago: but if all goes well, we will soon know incomparably more.

New Horizons
The New Horizons mission to Pluto was approved in 2001 after two previous proposals by NASA were cancelled. The triangular 478 kg (1,054 lb) space probe is about the size of a grand piano and is the first in a series of medium-cost ‘New Frontiers’ category missions to be launched by NASA, more expensive than ‘Discovery’ missions but cheaper than ‘Flagship’ missions. These terms are relative as at 650 million dollars, New Horizons isn’t exactly a bargain basement jaunt. The name New Horizons was meant to reflect the ambitious scope of the mission, although it is perhaps disappointing that the probe was not named for Clyde Tombaugh, who died in 1997 aged 90. However, it is a nice touch that a portion of his ashes are carried aboard the spacecraft.

The probe was launched from Cape Canaveral on 19 January 2006, a few months before Pluto was finally stripped of its planetary status. Launch was postponed several times due to technical problems and adverse weather conditions, and for a while there was concern that the window for an encounter with Jupiter was would be missed. While useful from a scientific point of view and providing a valuable opportunity to test the spacecraft’s instrumentation, the main purpose of the rendezvous was to use the giant planet for a gravity assist that would shorten the voyage to Pluto by three years. Fortunately, the issues were resolved, the skies cleared in time, and New Horizons finally lifted off at 14:00 EST on the afternoon of 19 January, watched live by millions around the world.
The spacecraft left Earth on a solar escape trajectory travelling at 16.5 km/sec (10.25 miles/sec) or 59,000 km/h (37,000 mph), faster than any previous launch. It took just nine hours to pass the orbit of the Moon and reached the orbit of Mars on 7 April 2006. The Jupiter gravity assist manoeuvre was carried out successfully on 28 February 2007, and New Horizons is now on course to reach Pluto on 14 July 2015, nine and a half years after leaving Earth.

After the encounter with Pluto, it is hoped that New Horizons can be sent on to investigate further Kuiper Belt objects. Unfortunately, the spacecraft has only a limited ability to manoeuvre, ruling out any possibility of a flyby of one of the larger bodies as none lie along its flight path. However, NASA is hopeful that a one or more objects of the order of 50 to 100 km (30 to 60 miles) in diameter may be located close enough to the current flight path for a rendezvous to be attempted. At the time of writing, the Hubble Space Telescope is being used to conduct a search for suitable targets that could be reached three to four years after the Pluto encounter.

Reflections
The Space Age begun in 1957 with the launch of Sputnik I, and was less than twelve years old when Neil Armstrong and Buzz Aldrin landed on the Moon. This breath-taking progress was of course driven by Cold War tensions between the United States and the Soviet Union, and it tended to overshadow the fact that even then robot space probes were rewriting the astronomy textbooks.
It is safe to say that before the Space Age we knew less about the Moon than we shall learn about Pluto if the New Horizons mission is a success. We had absolutely no idea what the far side of the Moon looked like until the Soviet probe Lunik III returned the first blurry images in October 1959. At that time, some believed that Venus resembled Earth during the Carboniferous Period 350 million years ago, and was a swampy world with luxuriant vegetation. Mars was thought to be cold and arid, but its polar caps were thought to contain some water as well as carbon dioxide. The atmosphere, though thin, was thought to be breathable and liquid water was thought to exist. Many believed that the planet supported life in the form of simple vegetation.

Between 1962 and 1989, space probes visited all the currently recognised planets, and a multinational ‘space armada’ visited Halley’s Comet during its 1986 return. In a single generation, our view of the Solar System was transformed as questions that astronomers had pondered since the invention of the telescope were answered. Inevitably, new questions have been posed and many long-standing theories have been consigned to the history books. Since then, the surface of Venus has been mapped; probes have visited a number of comets and asteroids; the Huygens lander has soft-landed on the planet-sized moon Titan; and rovers have been operating on Mars since 2004. In 2012, the car-sized rover Curiosity was soft-landed on Mars using a ‘sky-crane’ system that would not look out of place in a science-fiction movie.


The Pluto flyby will herald the beginning of a new phase in our exploration of the Solar System. Eventually, probes will visit worlds such as Quaoar, Sedna and Eris, although the distances involved means that such missions are likely to take decades to reach their objectives with current technologies. Possibly, novel technologies such as solar sails will be used, which in theory could bring the journey time down to a few years. For now, though, the focus is on Pluto. Perhaps New Horizons was not such a bad choice of name after all for the first spacecraft to visit this supposedly ex-planet.