Sunday 20 March 2016

Melanesian genomes reveal episodes of interbreeding with Neanderthals and Denisovans

Study demonstrates multiple encounters with archaic humans

In a new attempt to obtain genetic information about Neanderthals and Denisovans, researchers have analysed the genomes of 1,523 genetically-diverse individuals, including 35 Melanesians. Results were compared with known Neanderthal and Denisovan sequences. 1340 Mb of the Neanderthal genome and 304 Mb of the Denisovan genome were obtained.

The Melanesians show between 1.9 and 3.4 percent of Denisovan ancestry. They have an average 104 Mb of archaic sequences: 48.9 Mb of Neanderthal, 42.9 Mb of Denisovan, and 12.2 Mb of ambiguous sequence that could be either. By contrast, only 0.026 Mb (in Esan) to 0.5 Mb (in Luhya) of archaic sequences per individual were found in Africans. An average 65.0 Mb of archaic sequences were found in East Asians; 55.2 Mb in South Asians; and 51.2 Mb in Europeans. Most of these archaic sequences were Neanderthal in origin, although a small fraction (less than 1 percent) in East Asians and South Asians are predicted to be Denisovan. There was evidence for an additional pulse of Neanderthal admixture in Europeans, East Asians, and South Asians compared to Melanesians. The data suggests that there were at least three separate episodes of interbreeding between Neanderthals and modern humans, and one of modern humans interbreeding with Denisovans.

The study also found a statistically-significant overlap between regions depleted of Neanderthal and regions depleted of Denisovan genetic sequences, suggesting that archaic sequences in these regions were deleterious and were purged by the effects of purifying selection. Regions depleted of archaic lineages are contain large numbers of genes associated with specific regions of the brain, particularly in the developing cortex and adult striatum. A large region depleted of archaic sequences spans 11 Mb on chromosome 7 and contains the FOXP2 gene associated with speech and language, as well as genes associated with autism.

It is likely that further studies will reveal an increasingly complex picture of how modern humans have interbred with archaic humans throughout Eurasia. The depletion of archaic sequences from brain-related sequences of the genome might hint at cognitive differences between modern and archaic humans; or these regions might simply be more prone to adverse effects of horizontal gene transfer.

Reference:
x
Vernot, B. et al., Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals (10.1126/science.aad9416) (2016).x


No comments: